Green Arrays™ F18B
I/O and Peripherals

FEATURES

- Software Defined I/O
- High impedance (<3pF, >200mΩ) inputs
- Low power outputs
- ESD protection ≈10KV HBM
- Single io control and status register
- General purpose digital I/O pins
- Pin wakeup returning an instruction
- Analog Input and Output
- High speed SERDES
- 18-bit Parallel Bus

IMPROVEMENTS in F18B

- Smoother DAC with optional load
- ADC multiplexor can select DAC pin for calibration or as a second input
- HBM ESD protection increased
- New pin wakeup polarity management
- Reading a pin returns an instruction, shortening and simplifying code

APPLICATIONS

- Simple digital input and output points
- Simple communications PHY such as
 - Asynchronous RS232 framing
 - Synchronous, clock and data
 - High speed async >10 Mbit/sec
 - High speed sync >450 Mbit/sec
- Low speed USB, 10baseT
- Complex interfaces such as
 - SRAM/SDRAM control
 - SPI bus master or slave
- Real world interfaces such as
 - Temperature sensors
 - LEDs and photodetectors
 - Shaft encoders
 - Stepper or DC motors
 - Low band software defined radio
 - Human neurons
- Novel systems approaches, such as
 - Software operated resonant devices
 - Software TDR
- A wealth of applications not yet imagined or explored
- Featured in GreenArrays GA4-1.2

OVERVIEW

The F18B computer’s I/O repertoire consists of four classes of pins with peripheral circuitry: General Purpose programmable digital I/O, Analog I/O, 18-bit parallel buses, and a high speed serializer/deserializer (SERDES). Chips may be created with any practical combination of these classes connected to selected edge nodes; the actual functions of the pins are defined by software running in the nodes.

I/O PINS IN GENERAL: When used for input, our pins are designed to represent high-impedance loads with little capacitance. For output, we design for driving small, capacitive loads, to minimize I/O energy consumption. Some pins are capable of higher power modes of operation. Each pin has ESD protection diodes which begin conducting (0.1μA) when the voltage at a pin reaches Vdd+160mV or Vss-100mV. TLP testing of prototype chips indicates Human Body Model ESD protection on the order of 10KV.

THE IO REGISTER: An 18-bit control and status register, named io and diagrammed below, is each F18B’s interface with its I/O circuitry (if any) and comm port handshake lines. In the “READ” line of the table below, the green background indicates signals that, if they exist, come from other nodes or the world outside. If not, they are treated like

<table>
<thead>
<tr>
<th>BIT</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WRITE pin</td>
<td></td>
</tr>
<tr>
<td>ALT write</td>
<td>SR</td>
<td>vco</td>
<td>ctl</td>
<td>DB</td>
<td></td>
</tr>
<tr>
<td>READ pin</td>
<td></td>
</tr>
</tbody>
</table>

the blank bits and simply read the inverse of the last value written to that bit position in io. Read bit R means right port read handshake when 0; RW means right port write when 1. The adjacent bit pairs apply to the down, left, and up ports. Side nodes lack left, while top and bottom row nodes lack up comm ports. The writable bits of io are initialized, on reset, as though the value shown in the “reset” line had been written into the register. The values shown in “WRITE” pertain to general purpose digital I/O pins, if any; the values in “Alt write” are defined by specific peripherals.

GENERAL PURPOSE DIGITAL I/O (GPIO) PINS: If a node has such pins, they are identified by the bit position in io at which their state is read. Normal configuration procedures assign pin 17 first, followed by pins 1, 3, and 5 if a node has more than one pin of this type. State is set by writing a value into the two control bits for a pin. All pins reset to weak pulldown. The input bit reads the actual present voltage on the pin, 1 if high, regardless of the selected pin state; the computer is fast enough to directly observe the effects of RLC load circuits.

PIN WAKEUP: When a side node reads its left port address, or a top/bottom node its up, the read is suspended while the pin state is the same as it was the last time io was read. The data from the read is an instruction word @b... The pin may be included in any multiport read or execute operation.
Green Arrays™ F18B
I/O and Peripherals

ANALOG INPUT: The F18B analog to digital converter (ADC) is a high speed, free running counter that can be read as up or left using a special protocol. Its count down frequency varies between ≈3.6GHz for Vdd input and ≈5.7GHz for Vss, as shown in the typical transfer function at right. The vco ctl field of io selects mode as below, with counter disabled on reset to save power.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>DAC pad</td>
</tr>
<tr>
<td>01</td>
<td>Vdd Calibration</td>
</tr>
<tr>
<td>10</td>
<td>Counter disabled</td>
</tr>
<tr>
<td>11</td>
<td>ADC pad</td>
</tr>
</tbody>
</table>

A voltage is measured in the operating range (≈750mV to ≈1.3V) by calculating the difference between two readings separated by a known time interval. To assist distribution of a time base for sampling and for driving digital signal processing operations, a node with an ADC is supplied with a phantom wakeup pin, always in input mode, used in cooperation with another node.

ANALOG OUTPUT: The digital to analog converter (DAC) is a programmable current source that can be used to generate a voltage across a resistance to ground, or to source an op-amp. By writing the xor of a desired value and hex 155 into the low nine bits of io that value controls the DAC output. The value 1FF (written as 0AA) sets the DAC for maximum current; a value of 0 (written as 155, the reset state) sets minimum current, high impedance output. The typical DAC transfer functions, in mV versus DAC values, into 75, 50, 37.5 and 8 Ohms are shown at right; as the resistance decreases, the voltage decreases and the function becomes more linear. The S-shaped transfer function is loaded by the internal termination transistor (bit T in io zero).

SERDES AND PARALLEL BUS have not been laid out or prototyped yet for F18B. The following descriptions for F18A may be changed upon implementation.

SERDES: The serializer/deserializer peripheral is a high speed (~450 Mbit/second) transceiver for 18-bit frames using a half duplex two wire medium (clock and data). On reset the SERDES is in input mode. Writing 1 to bit SR in io sets transmit mode. When in transmit mode, writing a word to up is suspended until the previous word has been sent and then begins transmission of the new word. The clock stops if there are no data to transmit. When in receive mode, reading up is suspended until data are available. By jumping to up a node can execute code received via the SERDES. Additional rules apply for initializing the SERDES and for management of T and S.

18-BIT PARALLEL BUS: This peripheral consists of an 18-bit read/write register addressed as up or left such that each bit corresponds to an I/O pin. The DB bit in io controls bus direction: 1, its reset state, for output; 0 is tristate (high impedance) input. Unlike general purpose pins, reading the port in output mode gives no useful information. A node with this peripheral usually has at least one GPIO pin, or a phantom equivalent, for timing synchronization. In this case, operations on the up port wait for pin wakeup while data operates immediately regardless of pin state.

For more information, visit www.GreenArrayChips.com

Specifications are subject to change without notice.
GreenArrays, GreenArray Chips, arrayForth, and the GreenArrays logo are trademarks of GreenArrays, Inc. All other trademarks or registered trademarks are the property of their respective owners.

GreenArrays, Inc.
774 Mays Blvd #10 PMB 320
Incline Village, NV 89451
(775) 298-4748 voice
(775) 548-8547 fax
sales@GreenArrayChips.com